
Priority Queues and Binary
Heaps

See Chapter 21 of the text, pages 807-839.

A priority queue is a queue-like data structure
that assumes data is comparable in some way (or
at least has some field on which you can base
comparisons). You can only see or remove the
smallest value in a priority queue.

Clicker Question: What do I do if I want a priority
queue based on the largest rather than the
smallest value?

A. Use a comparator that flips its values: if x < y
have compare(x,y) return +1 rather than -1.

B. Multiply all of the values in the tree by -1.
C. Put the data in an array and sort it.
D. Put the data in an array and reverse-sort it.

There is varying terminology for priority
queues. Here are the Java names for the
standard operations. These differ from the
names our text uses; the text we used to use
for 151 had an even different set of names.
The following are what we will use in Lab 7. As
usual, this assumes that E is the base type of
the structure.

int size(): returns the number of items currently in the queue
boolean offer(E x) : inserts element x into the queue
E peek(): returns the smallest element in the queue without

changing the queue, or returns null if the queue is empty.
E poll(): removes from the queue the smallest element in it

and returns this element, or null if the queue is empty
void clear(): removes all of the elements from the queue
Iterator<E> iterator(): returns an iterator for the queue
Comparator<? super E> comparator(): returns the

comparator used for ordering the queue

We will add to these

void setComparator(Comparator<E> cmp): installs a new
comparator and reorders the queue.

It should not be surprising that priority queues
are important. In many situations we do not
need a complete ordering of our data; we just
need to know what comes next.

For example suppose you are making a to-do list
where some tasks are more important than others.
Put the tasks in a priority queue organized by
importance. The offer method adds a job to the
queue. The peek method lets you see whatever is
currently the most important job. When you are
ready to do a job the poll method gives you the
most important job and removes it from the queue.

Priority queues are often implemented in
terms of Binary Heaps. A heap is a tree with
the property that the value in each node is
less than or equal to the values of its children.

Here is a picture of a heap: 3

8 16

10 12

15 25

18 20

If we changed the 12 to a 6 it would no longer be a
heap because this node would have a value less than
its parent.

Note that in a heap the smallest node must be at
the root. If the smallest value had a parent, it
would violate the heap property because it
would be a child with smaller value than its
parent.

Binary heaps are often implemented in arrays,
using a convenient indexing system for trees.
We put the root at index 1. The two children of
the node at index n are at indices 2*n and
2*n+1. Alternatively, the parent of the node at
index i is at index i/2. If the tree is complete,
meaning that every level except the bottom is
completely filled and the bottom level has
entries filled from left to right, then there are
no gaps in the array.

Here is a picture of a complete heap and its
corresponding array. The index of each node is also
indicated in the tree:

3

10 45

12 11

18 25

48 50

3 10 45 12 11 48 50 18 25

2

1

3

4 5 6 7

8 9

Note that a complete heap with N nodes uses entries
1 to N of an array of size N+1.

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

To insert an element into the heap we start by
placing it at the next available spot. If the heap
has n elements indexed from 1 to n, we put the
new element at index n+1. If it has value
greater than its parent node (index (n+1)/2), we
are done. If not, we interchange it with its
parent node and try again. The new value
percolates up the tree until the heap property is
satisfied.

Here is an example. We add value 8 to the heap
we just displayed. First we insert it as the next leaf:

3

10 45

12 11

18 25

48 50

2

1

3

4 5 6 7

8 9 8 10

3

10 45

12 8

18 25

48 50

2

1

3

4 5 6 7

8 9 11 10

The value 8 is less than that of its parent node
so we interchange it with its parent:

Its value is still less than its parent's so we
interchange again:

3

8 45

12 10

18 25

48 50

2

1

3

4 5 6 7

8 9 11 10

Our node now satisfies the heap property, so we
stop interchanging and the entire tree is again a
heap.

Here is this process in terms of the underlying
array. We start by adding value 8 to the end:

3 10 45 12 11 48 50 18 25 8

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

The value we just inserted into index 10 is less
than that of its parent at index 5, so we switch
these values:

3 10 45 12 8 48 50 18 25 11

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

Our value at index 5 is still less than its parent at
index 2 so we switch those:

3 8 45 12 10 48 50 18 25 11

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

This now satisfies the heap property.

Here is code for this:
boolean add(E x) {

if (size == CAPACITY)
return false;

int hole = size+1; // where we might put x
size += 1;
nodes[0] = x; // guarantees we will stop when hole=1
while (compare(x, nodes[hole/2])< 0) {

nodes[hole] = nodes[hole/2];
hole = hole/2;

}
nodes[hole] = x;
return true;

}

3

8 45

12 10

18 25

48 50

11

Clicker Q: Start with this heap and insert the value
6. Where does it end up?

A. At the root.
B. As the left child of the root, where 8 is now.
C. As the right child of the root, where 45 is now.
D. As the right child of 8, where 10 is now.

3 8 45 12 10 48 50 18 25 11

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

Another Clicker Q: Now do it with an array. If we
insert the value 9 into the following heap, at
what index does it end up?

A. Index 2
B. Index 3
C. Index 4
D. Not at index 2,3,or 4

It is easy to find the smallest element; this is
the first element of the array, or the root of
the tree. We need an operation that removes
the smallest element. In order to maintain a
complete tree we must ultimately remove the
last leaf, or last element of the array. We
make a hole at the root, put the value of the
last leaf there, and pass it down through the
tree until we again have a heap. We call this
process "percolating down" the tree.

3

8 45

12 10

18 25

48 50

11

Graphically it looks like this. We start with a
heap and want to remove the root.

8 45

12 10

18 25

48 50

11

We make a hole at the root and put the value
of the last leaf there, deleting the last leaf
node.

The smaller of the two children of the hole has
value 8; this is smaller than the value in our
hole so we switch these items, moving the hole
down:

8

45

12 10

18 25

48 50

11

Again the smaller of the two children of the
hole is smaller than our leaf, so we move this
smaller child into the hole:

8

45

12

10

18 25

48 5011

This time the hole has no child so we
are done.

8

11

12

10

18 25

48 5011

One more clicker Q: if we remove the smallest
node from this heap, what value ends up at the
root?

A. 8
B. 10
C. 11
D. 0

We will divide the code for this into two steps. Here is the
deleteMin() method:

E deleteMin() {
E smallest = nodes[1];
nodes[1] = nodes[size];
size -= 1;
percolateDown(1);
return smallest;

}

This saves the value at the root, puts the last leaf into the
hole at the root, and calls percolateDown() to pass the
hole down through the tree. We separate out
percolateDown() because it has other uses as well.

void percolateDown(int hole) {
E value = nodes[hole]; // value being passed down
while (2*hole <= size) {

int smallChild; // index of smaller child
if (2*hole == size)

smallChild = size;
else {

if (compare(nodes[2*hole], nodes[2*hole+1]) < 0)
smallChild = 2*hole;

else
smallChild = 2*hole+1;

}
if (compare(value, nodes[smallChild]) < 0)

break;
else {

nodes[hole] = nodes[smallChild];
hole = smallChild;

}
}
nodes[hole] = value;

}

Here is the really cool part. We can turn an array
into a heap in linear time! We start at the leaves
and work our way up. Of course, there is nothing
to do at the leaves, they are already heaps. When
we get to a node we will have already turned its
leaves into heaps, so all that we need to do is to
percolate the value at the node downward:

void buildHeap() {
for (int i = size/2; i > 0; i--)

percolateDown(i);
}

It is time to do some analysis of these operations.
First, how tall are heaps?

An easy induction shows that a full binary tree with
height H has 2H+1-1 nodes. The bottom row of such
a tree has 2H nodes on it -- roughly half of the nodes
are leaves. A complete tree has anywhere from one
of these nodes to all of them. This means that a
complete tree of height H has between 2H and 2H+1-
1 nodes. As a result, the height is the logarithm of
the number of nodes in the tree.

We insert a node into a heap by putting it as a
leaf and letting it bubble up towards the root;
the number of steps is bounded by the height
of the tree, so this is a O(log(n)) operation.
We remove the smallest value by replacing it
with a leaf and letting it percolate down. Again
the number of steps is bounded by the height
of the tree, and deleteMin() is also a O(log(n))
operation.

The surprising operation is buildHeap(). For this we
visit each internal node, starting with the lowest and
working upwards. At each of these nodes we call
percolateDown(), so buildHeap() is bounded by the
sum of the heights of all of the nodes in the tree.

We will show that the sum of the heights of all the
nodes in a heap is proportional to the number of
nodes in the heap.

First we need a formula you learned in high school:

Clicker Q: What is the sum of the "geometric series"
S = an + an-1 + an-2 + ... + a ?

A. S= (an+1-a)/(a-1)
B. S = a/(1-a)
C. S = an+1

D. I don't care

Theorem: In a full binary tree of height H
(containing N = 2H+1-1 nodes) the sum of the
heights of all nodes is N-H-1.
Proof: Weiss gives (p. 821) an edge-coloring proof.
Here is a more analytical one. There are 2H leaves
of such a tree; these have height 0. The row above
this has 2H-1 nodes of height 1. Above this there
are 2H-2 nodes of height 2, and so forth.

The sum of the heights of all of the nodes is
S = 1.2H-1 + 2.2H-2 + 3.2H-3 + 4.2H-4 + 5.2H-5+...+H.20

If we double this we get a similar sum:

2S = 1.2H + 2.2H-1 + 3.2H-2 + 4.2H-3 + 5.2H-4+...+H.21

Now subtract these:

2S - S = 2H + 2H-1 + 2H-2 + 2H-3 + + 21 - H.20

The left side is just S, the right side is a geometric sequence
that we know how to sum:

S = 2H+1 - 2 - H
= N-1-H

A heap is not necessarily a full tree but it
contains a full tree of height H-1 with some
additional leaves of height H; we can derive a
similar O(N) bound for any heap.

This means that we can construct a heap out of
any array of n elements in time O(n).

While we are talking about heaps there is one more
important application of them. One of the
sweetest sorting algorithms is built on our
percolateUp() method. This is called HeapSort. It
sorts and array in time O(n*log(n)) and uses no
additional storage.

HeapSort requires a few changes in the way we
think of heaps. For one thing, it uses maxHeaps,
where the maximum element rather than the
minimum element is stored in each root. For
another, it indexes the heap starting at 0, so the
children of the node at index i are at indices 2*i+1
and 2*i+2.

The idea behind HeapSort is really simple. We
first make the array into a maxHeap, which
only takes time O(n). We then go into a loop
that pulls off the top element and puts it at
the end of the array, and reduce the size of
the heap by 1 so we don't consider this
element part of the heap any more. We
switch a leaf with the root and let this
percolate down, rebuilding the array. The
percolate operation takes time
O (log(n)) and we do it n times, so this is
O(n*log(n)).

Since this is a slightly different heap construction, I'll rename
the percolate method to percDown(). It takes 3 arguments:
the array, the index at which to start percolating, and the
current size of the heap.

Here is the HeapSort algorithm in terms of percDown():

public static <E extends Comparable <? super E>> void HeapSort(E[] a) {
// build the heap
for (int i = a.length/2 -1; i >= 0; i--)

percDown(a, i, a.length);

//sort
for (int i = a.length-1; i > 0; i--) {

swap(a, 0, i); // put the max of heap ai position i
// and the last leaf at the root

percDown(a, 0, i);
}

}

public static <E extends Comparable <? super E>> void
HeapSort(E[] a) {

// build the heap
for (int i = a.length/2 -1; i >= 0; i--)

percDown(a, i, a.length);

//sort
for (int i = a.length-1; i > 0; i--) {

swap(a, 0, i); // put the max of heap ai position i
// and the last leaf at the root

percDown(a, 0, i);
}

}

The next slide has the code for the new
percDown(), which works with maxHeaps. This
is a line-by-line translation of percolateDown(),
reversing the inequalities and starting the
indexing at 0 rather than 1:

public static <E extends Comparable <? super E>> void percDown(E[] a,int hole,int size) {
E value = a[hole];
while (2*hole+1 <size) {

int bigChild;
int child1 = 2*hole+1;
int child2 = 2*hole+2;
if (child1 == size-1)

bigChild = size-1;
else {

if (a[child1].compareTo(a[child2]) > 0)
bigChild = child1;

else
bigChild = child2;

}
if (value.compareTo(a[bigChild]) > 0)

break;
else {

a[hole] = a[bigChild];
hole = bigChild;

}
}
a[hole] = value;

}

