
Priority Queues and Binary 
Heaps

See Chapter 21 of the text, pages 807-839.



A priority queue is a queue-like data structure 
that assumes data is comparable in some way (or 
at least has some field on which you can base 
comparisons). You can only see or remove the 
smallest value in a priority queue.   



Clicker Question: What do I do if I want a priority 
queue based on the largest rather than the 
smallest value?

A. Use a comparator that flips its values: if x < y 
have compare(x,y) return +1 rather than -1.

B. Multiply all of the values in the tree by -1.
C. Put the data in an array and sort it.
D. Put the data in an array and reverse-sort it.



There is varying terminology for priority 
queues.  Here are the Java names for the 
standard operations.   These differ from the 
names our text uses; the text we used to use 
for 151 had an even different set of names.  
The following are what we will use in Lab 7.  As 
usual, this assumes that E is the base type of 
the structure.



int size( ): returns the number of items currently in the queue
boolean offer( E x) : inserts element x into the queue
E peek( ): returns the smallest element in the queue without 

changing the queue, or returns null if the queue is empty.
E poll( ): removes from the queue the smallest element in it 

and returns this element, or null if the queue is empty
void clear( ): removes all of the elements from the queue
Iterator<E> iterator(): returns an iterator for the queue
Comparator<? super E> comparator(): returns the 

comparator used for ordering the queue

We will add to these

void setComparator(Comparator<E> cmp): installs a new 
comparator and reorders the queue.



It should not be surprising that priority queues 
are important.  In many situations we do not 
need a complete ordering of our data; we just 
need to know what comes next.



For example suppose you are making a to-do list 
where some tasks are more important than others. 
Put the tasks in a priority queue organized by 
importance.  The offer method adds a job to the 
queue.  The peek method lets you see whatever is 
currently the most important job. When you are 
ready to do a job the poll method gives you the 
most important job and removes it from the queue.



Priority queues are often implemented in 
terms of Binary Heaps.  A heap is a tree with 
the property that the value in each node is 
less than or equal to the values of its children. 

Here is a picture of a heap: 3

8 16

10 12

15 25

18 20

If we changed the 12 to a 6 it would no longer be a 
heap because this node would have  a value less than 
its parent.



Note that in a heap the smallest node must be at 
the root.  If the smallest value had a parent, it 
would violate the heap property because it 
would be a child with smaller value than its 
parent.



Binary heaps are often implemented in arrays, 
using a convenient indexing system for trees.  
We put the root at index 1.  The two children of 
the node at index n are at indices 2*n and 
2*n+1.  Alternatively, the parent of the node at 
index i is at index i/2.   If the tree is complete, 
meaning that every level except the bottom is 
completely filled and the bottom level has 
entries filled from left to right, then there are 
no gaps in the array.



Here is a picture of a complete heap and its 
corresponding array.  The index of each node is also 
indicated in the tree:

3

10 45

12 11

18 25

48 50
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Note that a complete heap with N nodes uses entries 
1 to N of an array of size N+1.

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]



To insert an element into the heap we start by 
placing it at the next available spot.  If the heap 
has n elements indexed from 1 to n, we put the 
new element at index n+1.  If it has value 
greater than its parent node (index (n+1)/2), we 
are done.  If not, we interchange it with its 
parent node and try  again.  The new value 
percolates up the tree until the heap property is 
satisfied.



Here is an example.  We add value 8 to the heap 
we just displayed.  First we insert it as the next leaf: 
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The value 8 is less than that of its parent node 
so we interchange it with its parent:



Its value is still less than its parent's so we 
interchange again:
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Our node now satisfies the heap property, so we 
stop interchanging and the entire tree is again a 
heap.  



Here is this process in terms of the underlying 
array.  We start by adding value 8 to the end:

3 10 45 12 11 48 50 18 25 8

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

The value we just inserted into index 10 is less 
than that of its parent at index 5, so we switch 
these values:

3 10 45 12 8 48 50 18 25 11

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]



Our value at index 5 is still less than its parent at 
index 2  so we switch those:

3 8 45 12 10 48 50 18 25 11

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

This now satisfies the heap property.



Here is code for this:
boolean add(E x) {

if (size == CAPACITY)
return false;

int hole = size+1; // where we might put x
size += 1;
nodes[0] = x; // guarantees we will stop when hole=1
while (compare(x, nodes[hole/2])< 0 ) {

nodes[hole] = nodes[hole/2];
hole = hole/2;

}
nodes[hole] = x;
return true;

}
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Clicker Q: Start with this heap and insert the value 
6. Where does it end up?

A. At the root.
B. As the left child of the root, where 8 is now.
C. As the right child of the root, where 45 is now.
D. As the right child of 8, where 10 is now.



3 8 45 12 10 48 50 18 25 11

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

Another Clicker Q: Now do it with an array. If we 
insert the value 9 into the following heap, at 
what index does it end up?

A. Index 2
B. Index 3
C. Index 4
D. Not at index 2,3,or 4



It is easy to find the smallest element; this is 
the first element of the array, or the root of 
the tree.  We need an operation that removes 
the smallest element.  In order to maintain a 
complete tree we must ultimately remove the 
last leaf, or last element of the array.  We 
make a hole at the root, put the value of the 
last leaf there, and pass it down through the 
tree until we again have a heap.  We call this  
process "percolating down" the tree.  



3

8 45

12 10

18 25

48 50
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Graphically it looks like this.  We start with a 
heap and want to remove the root.
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We make a hole at the root and put the value 
of the last leaf there, deleting the last leaf 
node.

The smaller of the two children of the hole has 
value 8; this is smaller than the value in our 
hole so we switch these items, moving the hole 
down:
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18 25
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Again the smaller of the two children of the 
hole is smaller than our leaf, so we move this 
smaller child into the hole:



8

45
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10

18 25

48 5011

This time the hole has no child so we 
are done.
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One more clicker Q: if we remove the smallest 
node from this heap, what value ends up at the 
root?

A. 8
B. 10
C. 11
D. 0



We will divide the code for this into two steps.  Here is the 
deleteMin() method:

E deleteMin() {
E smallest = nodes[1];
nodes[1] = nodes[size];
size -= 1;
percolateDown(1);
return smallest;

}

This saves the value at the root, puts the last leaf into the 
hole at the root, and calls percolateDown() to pass the 
hole down through the tree.  We separate out 
percolateDown() because it has other uses as well.



void percolateDown( int hole) {
E value = nodes[hole]; // value being passed down
while (2*hole <= size) {

int smallChild; // index of smaller child
if (2*hole == size)

smallChild = size;
else {

if (compare( nodes[2*hole], nodes[2*hole+1]) < 0)
smallChild = 2*hole;

else
smallChild = 2*hole+1;

}
if (compare(value, nodes[smallChild]) < 0)

break;
else {

nodes[hole] = nodes[smallChild];
hole = smallChild;

}
}
nodes[hole] = value;

}



Here is the really cool part.  We can turn an array 
into a heap in linear time!  We start at the leaves 
and work our way up.  Of course, there is nothing 
to do at the leaves, they are already  heaps.  When 
we get to a node we will have already turned its 
leaves into heaps, so all that we need to do is to 
percolate the value at the node downward:

void buildHeap( ) {
for (int i = size/2; i > 0; i--)

percolateDown(i);
}



It is time to do some analysis of these operations.  
First, how tall are heaps?

An easy induction shows that a full binary tree with 
height H has 2H+1-1 nodes.  The bottom row of such 
a tree has 2H nodes on it -- roughly half of the nodes 
are leaves.  A complete tree has anywhere from one 
of these nodes to all of them.  This means that a 
complete tree of height H has between 2H and 2H+1-
1 nodes.  As a result, the height is the logarithm of 
the number of nodes in the tree.



We insert a node into a heap by putting it as a 
leaf and letting it bubble up towards the root; 
the number of steps is bounded by the height 
of the tree, so this is a O( log(n) ) operation.  
We remove the smallest value by replacing it 
with a leaf and letting it percolate down.  Again 
the number of steps is bounded by the height 
of the tree, and deleteMin() is also a O( log(n) ) 
operation.



The surprising operation is buildHeap().  For this we 
visit each internal node, starting with the lowest and 
working upwards.  At each of these nodes we call 
percolateDown( ), so  buildHeap( ) is bounded by the 
sum of the heights of all of the nodes in the tree.

We will show that the sum of the heights of all the 
nodes in a heap is proportional to the number of 
nodes in the heap.

First we need a formula you learned in high school:



Clicker Q: What is the sum of the "geometric series"
S = an + an-1 + an-2 + ... + a ?

A. S= (an+1-a)/(a-1)
B. S = a/(1-a)
C. S = an+1

D. I don't care



Theorem: In a full binary tree of height H 
(containing N = 2H+1-1 nodes) the sum of the 
heights of all nodes is N-H-1.
Proof: Weiss gives (p. 821) an edge-coloring proof.  
Here is a more analytical one.  There are 2H leaves 
of such a tree; these have height 0.  The row above 
this has 2H-1 nodes of height 1.  Above this there 
are 2H-2 nodes of height 2, and so forth.



The sum of the heights of all of the nodes is
S = 1.2H-1 + 2.2H-2 + 3.2H-3 + 4.2H-4 + 5.2H-5+...+H.20

If we double this we get a similar sum:

2S = 1.2H + 2.2H-1 + 3.2H-2 + 4.2H-3 + 5.2H-4+...+H.21

Now subtract these:

2S - S = 2H + 2H-1 + 2H-2 + 2H-3 + ...... + 21 - H.20

The left side is just S, the right side is a geometric sequence 
that we know how to sum:

S = 2H+1 - 2 - H
= N-1-H



A heap is not necessarily a full tree but it 
contains a full tree of height H-1 with some 
additional leaves of height H; we can derive a 
similar O( N ) bound for any heap.

This means that we can construct a heap out of 
any array of n elements in time O( n ).



While we are talking about heaps there is one more 
important application of them.  One of the 
sweetest sorting algorithms is built on our 
percolateUp( ) method.  This is called HeapSort.  It 
sorts and array in time O( n*log(n) ) and uses no 
additional storage.

HeapSort requires a few changes in the way we 
think of heaps.  For one thing, it uses maxHeaps,  
where the maximum element rather than the 
minimum element is stored in each root.  For 
another, it indexes the heap starting at 0, so the 
children of the node at index i are at indices 2*i+1 
and 2*i+2.  



The idea behind HeapSort is really simple.  We 
first make the array into a maxHeap, which 
only takes time O( n ).  We then go into a loop 
that pulls off the top element and puts it at 
the end of the array, and reduce the size of 
the heap by 1 so we don't consider this 
element part of the heap any more.  We 
switch a leaf with the root and let this 
percolate down, rebuilding the array.  The 
percolate operation takes time 
O (log(n) ) and we do it n times, so this is 
O(n*log(n)).



Since this is a slightly different heap construction, I'll rename 
the percolate method to percDown( ).  It takes 3 arguments: 
the array, the index at which to start percolating, and the 
current size of the heap.

Here is the HeapSort algorithm in terms of percDown( ):

public static <E extends Comparable <? super E>> void HeapSort( E[] a ) {
// build the heap
for (int i = a.length/2 -1; i >= 0; i-- )

percDown(a, i, a.length);

//sort
for (int i = a.length-1; i > 0; i--) {

swap(a, 0, i);  // put the max of heap ai position i
// and the last leaf at the root

percDown(a, 0, i);
}

}



public static <E extends Comparable <? super E>> void 
HeapSort( E[] a ) {

// build the heap
for (int i = a.length/2 -1; i >= 0; i-- )

percDown(a, i, a.length);

//sort
for (int i = a.length-1; i > 0; i--) {

swap(a, 0, i);  // put the max of heap ai position i
// and the last leaf at the root

percDown(a, 0, i);
}

}



The next slide has the code for the new 
percDown( ), which works with maxHeaps.  This 
is a line-by-line translation of percolateDown(), 
reversing the inequalities and starting the 
indexing at 0 rather than 1:



public static <E extends Comparable <? super E>> void percDown(E[] a,int hole,int size) {
E value = a[hole];
while (2*hole+1 <size) {

int bigChild;
int child1 = 2*hole+1;
int child2 = 2*hole+2;
if (child1 == size-1)

bigChild = size-1;
else {

if (a[child1].compareTo(a[child2]) > 0)
bigChild = child1;

else
bigChild = child2;

}
if (value.compareTo(a[bigChild]) > 0)

break;
else {

a[hole] = a[bigChild];
hole = bigChild;

}
}
a[hole] = value;

}


